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Interaction Studies 

Girish G. Sahasrabudhe, Kuru. V. Dinesha and Challa R. Sarma 

Department of Physics, Indian Institute of Technology, Bombay-400 076, India 

A simplification has been attempted in the procedures for determining the 
matrix elements of the generators of the unitary group U(n) over a tensor basis 
spanning the irreducible representation (2 n/2-s, 1 ~s) for an N-electron system. 
It has been shown that these matrix elements require, for their determination, 
only the corresponding representation matrices of cyclic permutations of the 
group S~. A viable algorithm has been obtained for determining these repre- 
sentation matrices. 

Key word: Spin-free configuration interaction. 

1. Introduction 

In a recent note Sarma and Rettrup [1] (referred to hereafter as I) suggested the use 
of a tensor basis spanning the irreducible representation (IR) (2 n/2-s, 12s) of 
U(n) for carrying out CI (Configuration Interaction) studies in molecules. The 
program based on this suggestion [2] proved to be considerably faster than the 
methods using spin-projected Slater determinants [2]. Basically the procedure in 
I involves the realization of the representation matrices for various orbital coordi- 
nate permutations P E Sz~. Though these permutations were explicitly spelt out, 
they were rather involved even for the matrix elements of single generators C~t of 
U(n) different configurations. This was particularly true of the matrix element 
(P'; q~(~ +11~2~[ C~t[p; ~(~lsr,a~,)) which required the matching permutation 
P=(r2ra.-. f~)(rir2.." rt) (cf. Eq. (12) of I). This requirement leads to relatively 
complicated expressions for the CI matrix elements of the spin-free Hamiltonian 
listed in the Appendix of I. 

It is the purpose of the present note to show that, as in the case of Eqs. (I0) and 
(17) of I, it is possible to consider only a single cyclic permutation in determining 
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the matrix element (p'; ~, ,  +lI~>l CseIp;  $<~,l,~,,t~,)) <a>. A simple programmable 
procedure will also be outlined to determine the representation matrices for cyclic 
permutations of Su using the Young-Yamanouchi basis [4, 5]. The present method 
is outlined in Sect. 2 and a brief discussion is presented in Sect. 3. 

2. Intereonfigurational Matrix Elements for the Generators C,t of U(n) 

Consider the set (~  I i = 1, 2 , . . . ,  n} of n orthonormal orbitals which form a basis 
for the fundamental representation of U ( n ) .  We form the set of all tensorial 
products 

4~<,~,> = q~,x(1) ff,1(2)-..  4,~,(2p - 1) ,#,,,(2p) ,#,,, + x(2p + 1 ) . . .  4',N_,,(N), 
i 1 < i2 < " ' "  < i~; i ~ + l  < i~+2 < " ' "  < i N - ~ ,  

p being the number of double occupied orbitals. No two ~(~ and ~ o'~,> ((i~) # (j~)) 
of the set are related to each other through a permutation of Ss. We further 
specify the occupancy of relevant orbitals, whenever required, by writing 
~(il~[s2.~.s.rs+ 11..._. t ,r t; . . .  ) for the tensor product 

r ~,~(2)... @~(r~) fb~(r~ + 1 ) . . .  ib~(2p)... ~ ( r t ) . . .  @ ~ _ ~ ( N ) .  

For example, for n = 8, N = 10, ~ ( i ~ l & 2 , 3 , , t l B , 7 ; B , 1 0 )  represents 

Ib,l(1) ~,1(2) Ibm(3) I/,4(4) Ih,3(5) Ib~(6) ~(7)  ~(~(8) !/,,~(9) @~(10). 

The set of all non-zero projections ~o~olb<(~ = IP; @,p>), P = 1, 2 . . . . .  f~;  all ~<~), 
then forms a basis for the IR (,~) = (2 N/2-s, 12s} of U ( n )  in I. We now consider the 
effect of the generators C~((s, t = 1, 2 . . . . .  n )  of U ( n )  on the configuration 1p; 
@((~l~,~,:t,~>). Using the arguments of I, we obtain, 

C~,Ip; 4'(~,,I~,,,e~,>) <~'> = "v'21p; .t w,> ~(i~ + 1 I srs,sr~)) �9 (1) 

We now define a cyclic permutation P = (r~ + 1, r~ + 2 , . . . ,  rt) which leads to the 
result, 

V'(iplsrs,trt)I = "P'(t~ + 1Is , r s , r s  + 1)./ , 
p ,  

(2) 

where the notation used is the same as in I and, 

fb(,~+ll~2,,,.r,+l) = ~ . . .  ~,~,p+x(rl). . .  (a~(r~)~(r~ + 1)--.~,~_p(rzr - 2p). (3) 

The procedure outlined in I requires that the right side of Eq. (2) be further trans- 
formed so that we obtain the state lo"; ff(~p+llsL~l,r2~) <a> before being matched with 
Io'; ~(~p+l,s2~) <~>. This essentially implies that for this case we need a product of 
overlapping cyclic permutations (r2ra " �9 ' f s ) ( r l r 2  " �9 �9 r t)  for the matching. Determin- 
ing the representation matrices, l~,a[(r2rz- �9 �9 f ~ ) ( r l r 2 .  �9  rt)],  of SN for such permuta- 
tions is a relatively difficult task involving summation over intermediate states. 
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However, it was shown in a recent note [6] that a state IP'; can be 
readily transformed into a linear combination of the states ]p'(.~; ~(~.. x l,~ ,,,,. + ~)<a> 
as, 

' .  ~ 2,  ",v,> = ~ J l  ,~+i I )  ip+.,k<,,+,l~.,,, , ,+~3v,> 
O, v-<,,+,,, ,.,=), , [~  2--~,p:~ i , 

(dP~+ 1 - I)i,2 .~ 2 ",<a>\ 
+ \ ~-~;;_~ IP ' ;  *<,,,+,,, ,,..,',+I,, f ,  (4) 

where e, = +1 ( - I )  if r, is the orbital coordinate of the odd (even) electron; 
p~ (p'_) is the standard tableau obtained from p' by decreasing all entries from rl 
to r~ + 1 by 2, moving them one row up in the same column and putting r, (r, + 1) 
in the second column followed by r, + 1 (r,) in the first column leaving all entries 
beyond r~ + 1 unchanged; d~;++ ~(d~s 1) is the axial distance between r, and r, + 1 

in p+ (p'_). As an illustration, consider 

q~ q~,~b2q~aq~6 = (as-) ~/2 26; ~1~2~a~ ~6 

+ (~)1,~ 
(5) 

This transformation implies that we need only consider the matching permutation 
of Eq. (2) in determining the matrix element (p'; q~  +11s2~[ Cst[p; q~l~,,,tn)) <~> where 
A = (2 N/2-s, 12s>. Thus we find that the determination of the matrix elements of 
C~t of U(n) requires simple cyclic permutations only (cf. Eq. (2) and Eqs. (9), (16) 
of I. 

We will now outline a simple programmable method for determining the matrix 
representation of the IR (2 N/2-s, 12s> for the cyclic permutation (rsrs + 1 . . .  
r~ + 1 rt). We shall obtain these representation matrices using Young-Yamanouchi 
basis. The IR (2 N/2-s, 12s) is characterized by standard Young tableaux which have 
at most two columns. In view of this we will consider an alternative to the Yama- 
nouchi notation [4] which is more convenient for programming on a computer. 
All entries in the first column of the Young tableau (of length N/2 + S) are identi- 
fied by the box number in which they occur as measured from the top. For each 
entry in the second column we add N/2 + S to the box number in which it occurs 
again as measured from the top. If we arrange these box number associations in a 
row read increasingly in electron entries from left to right we obtain a unique 
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identification of  each s tandard Young  tableau [4] with the corresponding symbol.  
As an illustration consider the following identification: 

[1273845961. (6) 

The main advantage of  the new nota t ion  is that  axial distances between consecutive 
entries are readily measurable  in this representat ion.  Consider  a pair  of  entries 
(k, k + 1) which are associated with the entries k, /~ '  in the new notat ion.  Then it 
is simple to verify that  the axial distance is given by 

{ ~ ] k - k ' ,  + N / 2 + S + I ,  
d~k+l = if/~(/~') > N/2 + S and ~'(k') ~< N/2 + S 

1, if both/~,k? '  ~< N]2+ S or bo th  /~,~'  > N/2+ S. (7) 

Using the tableau given in Eq. (6) we find, for example,  that  de 9 = - ( 9  - 6) + 
6 +  1 = 4 ,  dTa = - 4 + 7  = 3etc .  

Since the row symbol  for the s tandard Young  tableau is read as increasing in 
electron entries f rom left to right, the location of  a pair  o f  consecutive entries and 
the determinat ion of  axial distances becomes trivial. Using the rules for the matr ix  
elements of  e lementary transposi t ions between Y - Y  bases we 

+ I___L__ ( d ~ + l -  1) "2 . .~ ,  . 
(k, k + 1 ) [ . . - ] ~ ' . . . ]  = - d ~ + l  [ "]~k"'" ] + d~+~  [" ]L. ] 

(8) 

if ~ (or/~ ')  ~< N/2 + S and k" (or/~) > N/2 + S, and 

(k,k + 1 ) [ . . . k k ' . . . ]  = - [ . . - / ~ k ' . . . ]  (9) 

if bo th /~  and/~ '  ~< N/2 + S or >N/2 + S. In Eq. (8), d~k+z is as defined by Eq. 
(7) and + ( - )  sign is to be used if/~ < ~ '  (k > ]~'). 

We now use Eqs. (7), (8) and (9) to determine the matr ix  elements of  the cyclic 
permuta t ion  (rs, r~ + 1 . . . . .  rt - l, rt). Expressing this permuta t ion  as (r~, rs + l) 
(rs + 1, r~ + 2)- �9 �9 (rt - l, rt) we consider its effect on the basis state [. - �9 U i. �9 �9 ], 
where ~' and ? are the entries corresponding to rt - 1 and rt respectively. Since the 
cyclic permuta t ion  does not affect the entries corresponding to rq < r~ or > rt, it is 
obvious that  

< [ ' " ~ i ' " i l i ~ ' " ] [ ( r ~ , r s  + 1 , . . . , r t  - 1, r O l [ . . . g S ' . - .  ?' i . . - ] > < ~  = 0 
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unless all entries corresponding to rq < r~ or > rt match  in the initial and final 
tableau-states.  For  the non-zero case, omit t ing entries beyond those corresponding 
to rm, we have 

< [ . - - i l  il][(r,, rs + 1 , . . . ,  rt - 1)(rt - 1, r t ) l [ ' " - i '  i]> <a> 

-ate1<[... il]](rs, r~ + 1 , . . . ,  rt - 1)1['' . t ' ]> <a>, 

if F, i > N/2 + S or i ' ,  i <~ N/2 + S 

= + d--~_zr <[-- .ii]l(r~, r~ + 1 . . . . .  r, - 1)1[ . . . i ' ]>  <a> 

d = 1) 
+ 5" ( r,-l~, - ( [ - - . i i l l ( r s ,  r~ + 1, rt - 1) l [ ' - - i ]>  <a> 

~'~; d~,~_ 1~ . . . .  

i f i ( F )  ~< N / 2 +  S and i ' ( i )  > N/2 + S. (10) 

Thus the non-zero matr ix  elements result f rom contributions f rom two possible 
choices for every elementary t ransposi t ion in the cyclic permutat ion.  For  the 
t ransposi t ion (r v - 1, rv) the choice to be made  is clear f rom an inspection of rpth 
entry in the final state symbol.  Since the residual cyclic permuta t ion  does not involve 
r~ we can omit  this entry f rom the symbol  and proceed to the next transposit ion.  
As an il lustration consider the matr ix  element, 

([172384569][ (123456789) 1 [123748569]) <23,13>. 

Here N/2 + S + 1 = 7 and we can successively use Eqs. (7) and (10) to obtain,  

([172384569][(12345678)(89)[ [123748569]> 

= �88 [12374856]> 

= - �88 

= ~G([172384]1(12345)(56)I [123748]> 

1 2~/~ 
-- 1--6 • - - 7  ([17238]](1234)(45)][12378]) 

1 
- 12V2 ( -  1)([172311(123)(34)111237]> 

_ 1 2"~/2  
12~/~ • ~ ([172][(12)(23)[[127]> 

- 18 x ([17][(12)1[17]> 

v 5  
3 6 '  

(11) 

where, at each stage, the matched  entries not  affected by the residual f ragment  of  
the cycle have been omit ted for  notat ional  convenience. 
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3. Discussion 

We have demonstrated that the matrix elements of generators Ca of U(n) require 
only cyclic permutations for their determination. This is a considerable simpli- 
fication over the procedure presented in I. We have further shown that the 
Young-Yamanouchi representation matrices for cyclic permutation can be directly 
determined without recourse to Rumer basis as was done in I. This leads to a 
considerable reduction of storage requirements and permits the scope of CI 
calculations to be enlarged to include more open shells. The notation of Eq. (6) is 
extremely useful for programming for the matrix elements of cyclic permutations. 

The combined use of unitary and permutation group approaches, in which the 
projected Young basis (PYB)[1, 2, 6] is used to realize the basis states of IR 
(2 m2-s, 12s) of U(n), therefore reduces the problem of evaluation of the matrix 
elements of generators of U(n) to that of determining single open-shell cyclic 
permutation matrix elements. Similar conclusions have been reached by Ruttink 
[7] in recent publications. He realizes the basis states of U(n) by application of 
creation operators on the vacuum state. The cyclic permutation matrix elements are 
evaluated by him by comparison of spin diagrams (spin coupling schemes for open- 
shell orbitals). Our approach, however, is spin-free and the basis states IP; 6(~) are 
realized by use of the Wigner operators for SN. 

Paldus [8] and Shavitt [9] have given methods of evaluating the generator matrix 
elements through a graphical procedure (Graphical Unitary Group Approach, 
GUGA).  In their procedure, the contributions of an integral (or a block of integrals) 
are given by certain loops on the graphs. This procedure is useful for full CI calcu- 
lations. However the GUGA procedure is inefficient for carrying out limited CI 
calculations [9]. No such limitation exists for our procedure. Another advantage of 
the present approach is that it can be very easily extended to the case of non- 
orthogonal orbitals. Once the overlap matrix is evaluated, a slight modification of 
the computer program developed in I will give the matrix elements of the Hamil- 
tonian between non-orthogonal configurations [10]. 
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